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INTRODUCTION 

This report describes the methods used to estimate small-area populations using dasymetric 

mapping techniques. These population estimates are part of a study designed to improve flood 

risk exposure and vulnerability assessment by providing population estimates at a finer spatial 

scale than is possible using Census data. The dasymetric mapping techniques described here 

allow for the disaggregation of Census population tabulations based on publicly available parcel 

data.  

Risk is usually conceptualized as the product of three factors: hazard, exposure and vulnerability. 

For flood events, hazard refers to the extent and depth of flood waters, i.e., the physical 

manifestation of the flood over space. Exposure and vulnerability, on the other hand, relate to the 

impacts of the flood on the environment. These impacts may be tangible or intangible, and may 

include almost anything that is considered to be of value. For example, there may be impacts on 

human and social systems (displacement of residents, disruption of school and work patterns, 

etc.), the economy (destruction of homes and property, supply chain interruptions, 

unemployment, etc.), infrastructure (damage to roads and culverts, impacts on power generation, 

etc.), the environment (effects on critical habitats and biodiversity, etc.), and government 

functions (loss of tax revenue, costs of infrastructure repairs, lag in emergency response times, 

etc.). 

Exposure and vulnerability (EV) data are part of an integrated approach essential for effective 

flood planning, response and mitigation. Mapping of EV in the context of floods is necessary to 

provide reliable estimates of the social, economic and environmental resources that might be 

impacted. Since EV is inherently complex and multi-dimensional, a wide array of data must be 

collected in order to encompass all dimensions of the problem. Important dimensions include 

buildings and infrastructure, human populations, social and demographic variables, economic 

factors, the locations of care facilities, and possibly others depending on the local context (Rufat 

et al., 2015). Collecting and compiling this data into a usable form can be prohibitive, especially 

for small local governments with limited staff and budgetary resources. This leaves local 

decision-makers without a reliable assessment of flood EV to guide local policy and decision-

making. 

Equally important is the question of spatial scale. While flood hazards (i.e., extent and depth of 

flooding) are usually modeled using high-resolution grid cells in a GIS environment, EV data is 

rarely treated this way because it is usually tabulated only for large areal units. This is especially 

true in rural areas, where even the smallest areal unit used for Census Bureau population data – 

the block – can be as large as a square mile. Such areal units are too large to be used for detailed 

local decision-making and planning.  

As shown by Rufat et al. (2015), local context and situational variability are important mediators 

of EV. Drivers of EV may have different effects in different contexts and may contribute to high 

levels of EV in one context while detracting from it in another. The importance of local context 

can only be accounted for through the use of localized data. Stated another way, local decision-

making needs to be informed by EV data at a detailed spatial scale, not by global values and 

regional averages.  
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This is an area where geographers and cartographers can contribute. Long-standing geographic 

and cartographic methods such as dasymetric mapping can be used to disaggregate data from 

larger areal units to a more appropriate spatial scale. This process results in more detailed maps 

that more closely match the scale of the phenomenon being analyzed. Dasymetric mapping 

conventionally uses an underlying controlling (or limiting) variable such as land use to 

reapportion data tabulated for large areal units.  

Such methods are not unknown in the risk mapping community. For example, researchers have 

used dasymetric mapping to estimate populations at the parcel level to provide more accurate 

assessments of populations at risk from rising sea levels (Mitsova et al., 2012). Similar methods 

have been used to develop detailed population and economic data for assessing flood risk (e.g., 

Amadio et al., 2019). However, these studies are the exception rather than the rule. Decision-

making tools and data currently in use in Wisconsin, for example, whether at the local level or 

statewide (e.g., the Department of Health Service’s RAFT tool) generally do not employ 

disaggregated spatial data within the mix of layers available for EV assessment. And while 

models like Hazus provide dasymetric data for flood loss modeling, the dasymetric 

implementation simply involves clipping census tracts to eliminate areas where people do not 

live, such as wetlands and water bodies; down-sampling and disaggregation of census data is not 

considered.  

Dasymetric mapping (and similar techniques) can be used to produce detailed geospatial data for 

decision-makers at the local level as they plan for or respond to floods and other hazards. For 

example, by coupling EV data with flood hazard scenarios derived from H&H (Hydrologic & 

Hydraulic) models or Hazus, it is possible to quantify the impacts of a flood on people, 

structures, critical infrastructure, and other dimensions of EV. Moreover, it is possible to map 

these impacts on a detailed spatial scale to determine which areas are at the highest risk. EV data 

could also be used in more complex spatial models, such as assessing how access to hospitals or 

other critical facilities might be impacted regionally through flood impacts on the transportation 

network. 

One practical issue that must be considered is that the methods and tools used to produce EV 

data must be reproducible within the constraints of time, expertise and budget faced by the 

agencies responsible for database development and maintenance. In the context of local 

governments in rural parts of Wisconsin, this implies the adaptation of existing software and 

workflows rather than the addition of new software extensions and complex new processes. 

Source data must be readily available, and processing steps clearly explained in documentation 

so that data can be updated and analyzed easily by staff with GIS training. If existing tools and 

workflows can successfully be adapted to incorporate spatially detailed EV data, the net result 

will be decisions that are better aligned to local context and variability, and more accurately 

reflect the needs of local citizens and communities. 

SCOPE 

This report details the methods used to develop small-area population estimates using dasymetric 

mapping techniques to down-sample and disaggregate data tabulated for larger census tabulation 

units. The goal is to derive data at a detailed spatial scale appropriate for flood risk assessment. 
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The Census Bureau has released its 2020 “redistricting” data including demographic variables 

for census blocks. This data is available through the Geodata@Wisconsin geoportal (Esri, 2020). 

In this study, disaggregation of this data will be achieved using data from the Wisconsin 

statewide parcel database, which is available online (https://www.sco.wisc.edu/parcels/data/).  

We explore several dasymetric approaches, including multiple regression analysis and non-linear 

optimization tools, in which the population of the block serves as the dependent variable, and the 

number of parcels belonging to different property classes within the block serve as the 

explanatory variables. The resulting model coefficients represent the contribution of each class to 

the population. Our final model is a spatially weighted one in which the model is iteratively fit to 

the closest blocks for each target block. 

The study area is northern Ashland county and includes the cities of Ashland and Mellen, and the 

Towns of Gingles, White River, Marengo, Ashland and Morse. This area has a history of recent 

flooding, with federal disaster declarations in 2012, 2013, 2016 and 2018. Along the region’s 

Lake Superior coast, where much of the population is concentrated, there are also threats of 

coastal flooding associated with storm surges, lake level fluctuations, and events like seiches and 

meteotsunamis. As noted in the 2018 Ashland County Hazard Mitigation Plan, “there is a very 

high probability of flooding in the future and a very high probability of damage and losses due to 

flooding” with potential vulnerabilities that include residential structures, businesses and 

“flooded public facilities and schools, many of which are the community’s shelters needed when 

individual housing is uninhabitable.” The study area is predominantly rural, like most of the 

state. Its socio-economic rankings are generally below state averages reflecting broader trends of 

rural depopulation and economic decline. 

The permanent impacts of this study go beyond northern Ashland county and result from the 

transferability of our methods to other communities. Our goal is not just to produce a single set 

of population estimates, but to develop a methodology that can be adapted to the specific needs 

of any locale. Our focus is on Wisconsin coastal communities facing risks from riverine and 

coastal flooding. However, the methods and tools are also applicable in other risk contexts and in 

other regions of the state.  

 

https://www.sco.wisc.edu/parcels/data/


5 

 

 

Map of study area. The Bad River Reservation in the north-

east part of the study area, was excluded from the dasymetric 

analysis, due to the complexities of land tenure in this area. 

 

DASYMETRIC MAPPING 

The introduction of dasymetric modeling to English-speaking scholars is usually credited to 

Wright (1936), who created a population map of Cape Cod, Massachusetts, by reapportioning 

town population based on tract area and population density through an examination of 

topographic maps and other evidence. Dasymetric modeling attempts to reapportion population 

statistics from a set of source polygons to a different set of target polygons based on a 

“controlling” or “limiting” variable thought to influence the spatial distribution of population. In 

effect, the controlling variable is a proxy for the unknown population density distribution of the 

target polygon set. The target polygons are often smaller than the source polygons, but this is not 

a requirement. 

Dasymetric modeling is often applied when the polygons for which population statistics are 

available – such as census tracts – do not match the polygons required for a specific mapping or 

analysis application (Tapp, 2010). Our model operates by reapportioning Census Bureau block-

level population statistics to individual parcels using the property classes present within these 

parcels as a controlling variable. Property classes define the various uses of land within parcels, 

such as residential, commercial and industrial.  
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Population estimation at the parcel level has not been a traditional focus of dasymetric modeling 

studies. However, small-area population estimates and projections have a variety of uses and are 

increasingly in demand by government agencies, researchers, and planners. 

• The Southwest Florida Water Management District uses small-area population 

projections to support water supply planning and water use permitting (Doty, 2013). 

• The San Diego Association of Governments uses small-area population estimates for a 

variety of purposes, including infrastructure planning, public safety, public health, and 

modeling accessibility (Jarosz, 2008). 

• Mitsova, Esnard, and Li (2012) use parcel-level populations for Miami-Dade County, 

Florida, to provide assessments of populations at risk from rising sea levels associated 

with climate change.  

• Small-area population estimates provide detailed information on where people are likely 

to be located when emergencies occur (Sleeter & Wood, 2006). 

In general, small-area estimates are valuable because of their geographic detail and precision, 

which allows for greater flexibility when performing administrative, research, and planning 

functions (Jarosz, 2008; Tapp, 2010). 

MODEL FORMULATION 

Our goal is to disaggregate census polygon (block) population by assigning the population to 

parcels that fall within the polygon. To simplify matters and avoid problems with slivers and 

gaps, we use the parcel centroid, such that a given parcel can fall into only one block. The 

calculation is done over a set of contiguous blocks covering the study area. While we use blocks 

in this study, the methods would also work with block groups, tracts, or any other areal unit, 

except that as the size of the unit grows, disaggregation becomes less effective. 

An important caveat to our method is that we want to disaggregate to selected parcels, not every 

parcel in the study area. Parcels classified as residential, for example, are likely to contain 

inhabitants, while those classified as agricultural or industrial probably do not. We use the term 

“target parcels” for the parcels we want to disaggregate to, and the term “source polygons” for 

the polygons we are disaggregating from. 

Initially, we will assume that the target parcels we want are those with a residential property 

class – possibly mixed with other property classes such as agricultural – and an improved value 

that is greater than zero. The latter constraint means that the target parcels will contain an 

improved structure (a building) to differentiate them from unimproved parcels that may be 

classified as residential but do not contain inhabitants. 

Household Size 

The simplest way to disaggregate population data involves manipulation of census variables 

tabulated for the source polygons (blocks). Mean household size for a given polygon i is simply 

the population of the polygon divided by the number of occupied housing units in the polygon. 
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Thus �̂�𝑗 (the estimated population of target parcel j whose centroid falls within source polygon i) 

can be computed as: 

�̂�𝑗 =     𝑝𝑖 / ℎ𝑖 for that value of i where 𝐼(𝑗)𝑖 = 1 (1) 

where: 

𝑝𝑖 = known population of source polygon 𝑖 

ℎ𝑖 = number of occupied housing units in polygon i   

𝐼(𝑗)𝑖 = indicator function with a value of 1 if target parcel j is in source polygon i  
              and 0 otherwise 

The problem with this approach is that the number of occupied housing units for polygon i is not 

always equal to the number of target parcels within i, i.e., 

 ℎ𝑖 − ∑ 𝐼(𝑗)𝑖  
?
=

  0𝐽
𝑗=1   (2) 

where: 

𝐽 = number of target parcels 

How prevalent is this problem and what is its magnitude? In our study area in northern Ashland 

county, the mean of the values computed for equation (2) is 0.38. In other words, the number of 

occupied housing units in each block is on average slightly greater than the number of target 

parcels. Also, there is a substantial amount of variation in the relationship between occupied 

housing units and target parcels, given the standard deviation of 6.36 against a value of 5.61 for 

the mean number of occupied housing units.  

Why do these discrepancies occur? There are several reasons. 

1. A difference in the reference date of the parcel data and census data. Residential units 

might have been added or removed between the two dates. 

2. Errors in the data. 

3. The presence of apartments. In parcel data, an apartment will appear as a single target 

parcel while in census data there may be multiple housing units associated with this 

parcel. From the perspective of the number of target parcels, mean household size will be 

too large. 

4. The presence of group quarters, e.g., college dorms. This case is similar to apartments, 

but the census reports zero housing units associated with these group quarters.  

5. The presence of population in non-residential parcels. Some parcels that are not coded as 

residential may in fact have inhabitants. An example is mobile home parks, which may be 

coded as commercial. If we allow population to fall only into residential parcels in the 

model, we will be left with a large leftover population with no parcel to assign it to.  

6. The presence of population in tax-exempt parcels. An example is a parcel owned by a 

municipal housing authority. Such parcels contain housing units, but in parcel data they 

are coded as exempt rather than residential. To complicate matters, not all exempt 
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properties have inhabitants, since exempt properties also include schools, churches and 

municipally owned properties. 

7. The error intentionally introduced by the Census Bureau for disclosure avoidance. The 

number of households within a block is always correct, but population is purposefully 

manipulated. This deliberate introduction of error occurs at all levels of census geography 

up to the state level. 

8. The distinction between occupied and unoccupied housing. The census differentiates 

between these, but occupancy status cannot be determined from parcel data. Many homes 

could be lake cottages or second homes, but our process would still treat them as target 

parcels. 

If we use ℎ𝑖 (the number of occupied housing units) in conjunction with our own target parcel 

centroids, these errors will come into play. How do we avoid this problem? An obvious idea is to 

replace ℎ𝑖 with the number of target parcels in i, i.e.,  

�̂�𝑗 =  𝑝𝑖 / ∑ 𝐼(𝑗)𝑖 𝐽
𝑗=1  for that value of i where 𝐼(𝑗)𝑖 = 1 (3) 

The problem here is that equation (3) does not resolve the problem of why there should be a 

difference between ℎ𝑖 and the number of target parcels. This discrepancy is due in part to issues 

#4 and #6 above, where non-residential property classes contain population. Different property 

classes are unlikely to have the same weight. For example, the population residing on a single 

parcel containing dozens of mobile homes will be much greater than the number of people 

residing in a single-family home. 

Property Class 

A more general population allocation model would account for these differences in property 

classes. First, let us define a set of weights for a given property class k as follows: 

 𝑤𝑘 = weight assigned to property class 𝑘  

 K = number of different classes of property  

The value 𝑤𝑘 is an estimate of the mean number of people per target parcel for class k. We will 

discuss later how to estimate these weights. Given a set of K values of 𝑤𝑘 we can estimate target 

parcel population �̂�𝑗  simply as 𝑤𝑘 when 𝑐𝑗 (the property class of target parcel j) is equal to k. 

However, since the 𝑤𝑘 values are averages for the whole study area, individual target parcels 

may end up over- or under-estimated. This in turn implies that the sum of the populations of all 

target parcels within a given source polygon may not be equal to the known population of the 

polygon. Thus we may add or lose population in the study area, which violates the 

pycnophylactic constraint of density preservation. To preserve population (and density) we need 

to normalize all estimates. For a given polygon i, 

�̂�𝑗 =  𝑝𝑖  
𝑤𝑐𝑗

∑ ∑  𝑤𝑘 𝐼(𝑗)𝐾
𝑘=1 𝑖𝑘

 
𝐽
𝑗=1

 for that value of i where ∑ 𝐼𝐾
𝑘=1 (𝑗)𝑖𝑘 = 1 (4) 

where: 
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𝑐𝑗 = property class of parcel 𝑗 

K = number of unique property classes 

J = number of target parcels in the study area 

𝑤𝑐𝑗
= weight of property class 𝑐𝑗   

𝑤𝑘 = weight of property class 𝑘   

𝐼(𝑗)𝑖𝑘 = indicator function with a value of 1 if target parcel j is in source polygon i  
                and has a property class of k, and 0 otherwise 

This more general formulation of the dasymetric model allows for the possibility that parcels 

other than residential ones can contribute population. Equation (4) lets the data “speak for itself” 

by allowing any property class to contribute. 

Model Stratification 

An even more flexible model allows the weights 𝑤𝑘  to vary, not just with property class, but 

over the study area. Some regions might have different sets of weights than others. For example, 

it seems likely that residential parcels in a city will have different densities on average than 

residential parcels in a rural area. We experimented with stratified models in two ways: stratify 

by the mixture of property classes with each block (an ecosystem approach) or stratify by 

location (often called a spatially weighted approach). 

In ecosystem stratification we first identify a finite number of property class mixtures that typify 

the study area, using some type of clustering method to group similar polygons together as 

representative members of the same ecosystem. For example, we might identify polygons that 

are dominated by improved residential parcels, polygons that contain residential parcels adjacent 

to agricultural land, etc. The typology can be based on known or hypothesized relationships 

between population density and different land use patterns, as revealed in the mixture of property 

classes present. To some degree, this will be based on empirically observed counts of polygons 

with various property class mixtures, which may vary from case to case in different study areas. 

We modify equation (4) slightly to add this additional flexibility: 

�̂�𝑗 =  𝑝𝑖  
𝑤𝑐𝑗𝑟𝑗

∑ ∑  ∑ 𝑤𝑆
𝑠=1 𝑘𝑠 

𝐼(𝑗)𝐾
𝑘=1 𝑖𝑘𝑠

 
𝐽
𝑗=1

 for that value of i where ∑ ∑ 𝐼𝑆
𝑠=1

𝐾
𝑘=1 (𝑗)𝑖𝑘𝑠 = 1 (5) 

where: 

𝑤𝑐𝑗𝑟𝑗
 = weight of property class 𝑐𝑗 within stratum 𝑟𝑗 

𝑐𝑗 = property class of parcel 𝑗 

𝑟𝑗 = stratum that parcel 𝑗 belongs to 

S = number of strata 

𝑤𝑘𝑠 = weight of property class 𝑘 within stratum s 

𝐼(𝑗)𝑖𝑘𝑠 = indicator function with a value of 1 if target parcel j is in source polygon i , 
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                and has a property class of k, and belongs to stratum s, and 0 otherwise 

In addition to the ecological approach, we also define strata spatially, in which case we assign 

each parcel to one of a finite number of geographic regions. This approach explicitly accounts 

for spatial nonstationarity. Some research on nonstationarity in dasymetric modeling has already 

been carried out (Bielecka, 2005; Langford, 2006; Lin, Cromley, & Zhang, 2011; Schroeder & 

Van Riper, 2013). This approach is also known as a spatially-weighted approach. 

ESTIMATION OF WEIGHTS 

The derivation of appropriate weights to support dasymetric calculations is perhaps the most 

complex part of the process. 

Limiting/Controlling Variables 

Some studies of dasymetric mapping assign weights by distinguishing between uninhabited and 

inhabited areas. As noted by Reese-Cassal (2007), a common strategy to implement this binary 

model is to use land cover data derived from remote sensing imagery, such as the National Land 

Cover Database (Homer, Fry, & Barnes, 2012). In dasymetric mapping, land cover is often used 

as the controlling variable that drives the spatial distribution of population. In the binary model, 

various land cover classes are collapsed into two categories representing inhabited and 

uninhabited land, and weights of 1 and 0 are then assigned to their categories. Examples of this 

approach include Langford and Unwin (1994), Holt, Lo, and Hodler (2004), Langford (2007), 

Langford (2013), and Buttenfield, Ruther, and Leyk (2015).  

The binary model has the advantage of simplicity, but – as noted in the Model Formulation 

section above and by other researchers (e.g., Langford, 2006) – it is unable to account for 

variations in density associated with more complex mixtures of land cover classes.  

To accommodate additional land cover classes, target parcel (or more generally target polygons, 

since some studies are not parcel-based) weights must be allowed to take values other than 0 or 

1. For example, high-density residential areas might be expected to contribute more population 

per square mile than low-density areas; to adequately model this fact three or more classes are 

needed, each with its own weight. In such models, weights vary among classes but are uniform 

within any one class, and as such can be viewed as average population densities for each class. 

This multi-class approach is quite popular (Eicher & Brewer, 2001; Giordano & Cheever, 2010; 

Jia, Qiu, & Gaughan, 2014; Mennis, 2003; Tapp, 2010). Some researchers have noted that the 

expected performance gains of the multi-class model do not always emerge empirically; 

however, research on this question is far from conclusive (Langford, 2006).  

When more than two classes are involved, a method must be found to specify a weight for each 

class. Some researchers have taken a subjective approach to this problem. Wright (1936), for 

example, used “educated guesswork” – which raises concerns about accuracy and repeatability. 

Most dasymetric models are empirically based, with weights dependent on the controlling 

variable. In the case of land cover, for example, it is common practice to identify multiple classes 

of developed land – such as high, medium, and low intensity – and then assign each class a 

specific weight.  
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For Eicher and Brewer (2001) and Mennis (2003) estimation of class weights involves the 

identification of source polygons that are categorically pure, i.e., that contain only one class. The 

observed population densities of these pure polygons are then used to compute the weight for the 

class. A problem with this approach is that pure polygons tend to be rare in many datasets, which 

leads to questions about how representative such polygons can be of the whole dataset. A related 

problem is that to identify a sufficiently large sample, it is often necessary to relax the rules and 

use polygons that are not perfectly pure (Giordano & Cheever, 2010; Jia et al., 2014; Mennis & 

Hultgren, 2006). An obvious question is how far the assumption of purity can be relaxed before 

accuracy suffers. Moreover, the likelihood of finding pure polygons diminishes as the number of 

classes increases, making this approach even more problematic for more complex dasymetric 

models.  

Despite the popularity of land cover as a controlling variable, there is an inherent fallacy 

associated with using land cover in this context. The land cover classes derived from remote 

sensing imagery correspond to mixtures of physical features – streets, rooftops, tree canopies, 

etc. – that give rise to characteristic spectral response profiles identifiable on imagery. However, 

these land cover classes are an inadequate surrogate for the various land use categories 

representing human habitation of the land. For example, the land cover class “developed” 

typically includes not just the apartments, condos, and single-family homes where people reside, 

but also warehouses, highways, parking lots, and other features not normally used as residences. 

Dasymetric population maps based on land cover often depict such areas erroneously as having 

significant population concentrations (Hackett, Veregin, & Cox, 2015; Zandbergen & Ignizio, 

2010).  

Parcels 

Only a few researchers have focused on dasymetric modeling at the parcel level. Sleeter and 

Wood (2006) used two parcel attributes – land use and building type – to partition parcels into 

four density classes: high, medium, low, and uninhabited. Population densities for these classes 

were then estimated using a sampling approach. Other researchers have derived weights based on 

the number of address points or the number of residential housing units within each parcel 

(Mitsova et al., 2012; Tapp, 2010).  

Some researchers view parcels as a data source rather than a destination for population estimates. 

For example, Jia, Qiu, and Gaughan (2014) and Jia and Gaughan (2016) used parcel data to 

access residential property tax categories, which were then used in a model to estimate 

populations for a gridded dataset. In this approach, parcels are important because they improve 

the accuracy of the final gridded dataset, rather than because of any intrinsic interest in 

population estimates for the parcels themselves.  

The Southwest Florida Water Management District uses two main variables to estimate parcel 

populations: the total number of existing residential units (households) within each parcel, 

obtained from a parcel dataset, and average population per household (household size), derived 

at the tract level from Census Bureau statistics. The estimated population of a parcel is then 

computed as the number households in the parcel multiplied by the average household size 

(Doty, 2013). 
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Empirical Derivation of Weights 

Many researchers agree that sampling and statistical analysis is necessary to estimate class 

weights and that regression analysis provides an appropriate framework. In this approach, 

weights are computed empirically based on observed relationships between source polygon 

populations and their class compositions. Flowerdew and Green (1989) pioneered the use of 

Poisson regression in this context under the assumption that population follows a Poisson 

distribution. Other researchers have rejected Poisson regression in favor of Ordinary Least 

Squares (OLS) regression, in part because of OLS’s computational simplicity (Reibel & 

Agrawal, 2007). The main problem with OLS regression in this context is that it does not 

guarantee that coefficients will be non-negative, which may give rise to negative population 

densities (Langford, 2006; Yuan, Smith, & Limp, 1997). Some researchers have suggested 

modifications to OLS regression to ensure that population estimates are always positive 

(Goodchild, Anselin, & Deichmann, 1993). 

There are some useful parallels here to hedonic modeling as used in econometrics. The premise 

of hedonic modeling is that the price of a marketed good is related to its characteristics, and that 

it is possible to attach a value to individual characteristics by parameterizing the price people are 

willing to pay for them (Bell & Irwin, 2002; Rosen, 1974). Statistically this amounts to 

regressing the price of a good, such as a house, on a set of characteristics like house size, the 

number of bedrooms, and the presence of an attached garage. The resulting regression 

coefficients represent how much consumers are willing to pay for each of these characteristics. 

The total price of the house is a linear combination (sum) of the weight (in dollars) of each 

characteristic. 

To apply this method to dasymetric modeling in our study, we substitute source polygon (census 

block) population for house price and the count (number of parcels) of each property class within 

the source polygons in place of housing characteristics. The resulting regression coefficients 

represent the total population contributed per parcel for each class. The model can be expressed 

as follows.  

�̇�𝑖 =  ∑ 𝑏𝑘
𝐾
𝑘=1 𝑞𝑖𝑘 (6) 

 where: 

 �̇�𝑖 = estimate of population for source polygon i 

𝑏𝑘 = weight (regression coefficient) for class k  

𝑞𝑖𝑘 = count of property class k parcels within source polygon i 

𝐾 = number of unique property classes 

The coefficients 𝑏𝑘 represent population density values for each class, and as such they can be 

used in equation (4) – as well as equation (5) with some modification. Note that in this context 

regression analysis is not being carried out to test hypotheses, but rather as a practical solution to 

a problem of estimation (Reibel & Agrawal, 2007).  
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Equation (6) can be implemented using OLS regression; however, one problem with OLS is that 

it does not constrain coefficients to be positive, which can lead to negative population estimates. 

Our solution is to use Generalized Reduced Gradient (GRG) optimization in place of OLS. GRG 

is an advanced analytics tool that can be used to solve a variety of nonlinear problems and is 

available in desktop software including the Microsoft Excel Solver tool.1 In Excel, GRG is easy 

to set up and runs quickly, and results can easily be incorporated into other equations and 

calculations.  

For dasymetric modeling, the GRG model is formulated with the goal of minimizing the sum of 

squared deviations between actual and estimated populations of source polygons. The model 

modifies class weights until a solution is attained. The formal specification is as follows: 

minimize   ∑ (𝑝𝑖 −  �̇�𝑖)2𝐼
𝑖=1  (7) 

such that 𝑏𝑘 ≥ 0,     ∀ 𝑘 

where 𝑝𝑖 = observed population of source polygon i 

 �̇�𝑖 = estimate of population for source polygon i 

𝑏𝑘 = weight for property class k  

 𝐼 = number of source polygons 

Note that this formulation imposes a constraint that the weights for all property classes, 𝑏𝑘, are 

non-negative. 

One limitation of GRG and other nonlinear optimization tools is the existence of multiple local 

feasible solutions where all constraints are satisfied. Generally, there is no way to determine 

which local solution is globally optimal. Because of this problem, it is a good idea to run a GRG 

model using starting values based on a priori knowledge to increase the chances of finding the 

optimal solution. We use standard OLS estimates as the starting values. 

Property Class 

The controlling variable in our case study is a property class attribute used for tax assessment at 

the parcel level. This attribute identifies seven primary property classes and a variety of 

secondary or auxiliary classes and is closely associated with human habitation. We anticipate 

that the residential class will contribute the most to population loadings for parcels, although 

additional classes, such as the other class, also have population associated with them. Property 

class and auxiliary property class definitions can be found here: 

https://www.sco.wisc.edu/parcels/data/assets/V9/V9_Wisconsin_Statewide_Parcels_Schema_Do

cumentation.pdf  

MODEL IMPLEMENTATION 

We employed a variety of tools and software packages to explore dasymetric models for this 

study. Here we report only on our final and best result, a spatially weighted GRG solution 

 
1 Our use of Microsoft Excel should not be construed as an endorsement of this particular software product. Other 

implementations of GRG also exist. 

https://www.sco.wisc.edu/parcels/data/assets/V9/V9_Wisconsin_Statewide_Parcels_Schema_Documentation.pdf
https://www.sco.wisc.edu/parcels/data/assets/V9/V9_Wisconsin_Statewide_Parcels_Schema_Documentation.pdf
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implemented in Microsoft Excel using standard tools including the Solver, Pivot Tables, the 

vlookup function and Macros.  

The major steps in the implementation are as follows. 

1. Simplify the property class classification to reduce the number of possible combinations 

of property class and auxiliary property class for parcels. Since a parcel may contain 

mixtures of these classes, the number of possible combinations can grow quite large, with 

some combinations occurring only rarely. The simplification process is necessarily 

somewhat subjective. In our case, we created six final classes: RES (parcels containing a 

residential property class, possibly in conjunction with other classes, with an improved 

value greater than zero); RES0 (parcels containing a residential property class, possibly 

in conjunction with other classes, but with improved value equal to zero); COMM 

(parcels classified as commercial with no residential component); AUXX (parcels 

classified as Auxiliary Class X, usually denoting public ownership or other tax-exempt 

status), AUXW (parcels classified as Auxiliary Class W, associated with managed forest 

land), and OTHER. Each parcel is assigned to one and only one of these six classes. 

2. Use GIS tools to compute the number of parcel centroids of each of the six classes within 

each census block, and to populate a cross-walk between parcel IDs and block IDs. 

3. Create a table in Excel where each row represents a block. Important attributes to include 

in this table are: a) block ID; b) block population from census; c) count of each class 

computed in #2 above, with one column for each class; d) six empty fields that will hold 

the GRG-derived coefficients, one for each class; e) the latitude and longitude (or easting 

and northing) of each block centroid; f) column to hold the distance between the block 

centroid and the “target block” that will be estimated; g) column to hold the initial 

population estimate for the block, computed from the weights derived from the GRG 

analysis multiplied by the parcel count for each class, i.e., equation (6); h) column to hold 

the final pop estimate; i) a pre-estimate squared error column, computed as the square of 

the difference between the initial population estimate and the census population; and j) a 

post-estimate squared error column, computed as the square of the difference between the 

final population estimate and the census population. 

4. The table also needs to have a cell with the objective function for the Solver, in this case 

the sum of squared errors for the first fifty rows of the table. The first fifty rows are used 

because we are using the closest fifty blocks to the target block. The sum of squares is the 

sum of the first fifty rows of the pre-estimate squared error column (i in #3 above). The 

solver will try to minimize this value.  

5. The table needs six blank cells that will hold the Solver-derived coefficient estimates.  

6. Compute the distance from the first block in the table to every other block and store the 

result in the distance column. Use the Pythagorean Theorem for eastings/northings and 

great circle distance for latitude-longitude coordinates. Next, a) sort the rows of the table 

from smallest to largest distance; b) initialize the Solver coefficients to 1; c) run the 

Solver to minimize the error sum of squares for the closest fifty blocks, which will also 
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compute the initial population estimate for the block; and d) store the coefficients from 

the solver (d in #3 above) and the population estimate (h in #3 above). 

7. Repeat the procedure in a loop for every block in turn. This was implemented as a macro 

in Excel. (Macros and scripts are two different ways of automating procedures in Excel.) 

8. Create a second table in Excel where the rows are the parcels. Important attributes are a) 

the parcel ID, b) the block ID of the parcel, c) the simplified class of the parcel (one of 

six possible values), d) a column for the GRG coefficient for the parcel; e) a column for 

the denominator of the normalization equation as in equation (5); and f) a column for the 

final population estimate of the parcel. 

9. Using the Excel vlookup function, assign the correct GRG coefficient to each parcel 

based on its simplified class and its block membership.  

10. Using Pivot Tables, calculate the denominator of the normalization equation. 

11. For each row of the parcel table, divide the GRG coefficient by the denominator value to 

compute the final population estimate for the parcel. 

12. Results can be extracted to a text table, joined to the parcel feature class, and used for 

mapping and analysis purposes. 

RESULTS  

Compared to other models we experimented with, the spatially weighted Solver model yielded a 

higher pseudo-R2 value, of about 0.75, compared to other models that were below 0.5. This value 

reflects the relatively good model fit when we allow coefficients to vary spatially over the study 

area. The map of population estimates is part of an online app developed for the project. 

Our results show that population estimates at the parcel level can be obtained using dasymetric 

techniques using standard GIS and office software. The Excel model developed here could be 

converted to another platform or language depending on users’ skills and preferences. The 

approach requires parcel data with an attribute describing the classes of property and, ideally, 

improved value. This study used block-level census data, but other levels of census data could 

also be used.  

While the high pseudo-R2 value of the spatially weighted Solver model indicates a good fit to the 

data, we cannot easily establish a quantitative value for the accuracy of the parcel estimates 

themselves. This cannot be assessed without reference to independent population data at the 

parcel level.  
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